
An Implementation of a Distributed Interactive Graphics

System for a Supercomputer Environment.
RND-87-001

Diana Choi and Creon Levit

NASA Ames Research Center
o

Abstract
We describe the design, implementation, and performance of a distributed interac-

tive graphics software system. The software is distributed between two machines with

very different capabilities, a supercomputer (Cray-2) and a graphics workstation (Sili-

con Graphics Iris). Both machines run the same operating system (unix) and are pro-

grammed by the user. Three dimensional graphical transformations, display updates,

the user interface, and related operations are handled by the graphics workstation, while

computationally intensive operations and some graphics are performed by the supercom-

puter. Communication between the two machines consists of a remote graphics protocol

using TCP/IP as the transport layer.

Keywords: distributed graphics, computer graphics, workstation, supercom-

purer, unix, computational fluid dynamics, flow visualization.

Introduction
The traditional method of using computer graphics at a supercomputer center can be

an awkward and time-consuming process. To display data generated from codes running

on the supercomputer, the user must usually perform the following tasks:

1. Execute the application program that generates data.

2. Convert data from the supercomputer's format to display device format.

3. Download the data to the graphics display device.

4. Execute a program to display the graphics on that device.

5. If the results are unsatisfactory or another iteration is required, modify some pa-

rameters and start again.

Users will often do a calculation locally on the workstation, where it takes several

minutes or more, rather than on the supercomputer, where it would take only seconds,

simply to avoid the overhead of running communication, file transfer, and data conversion

programs.
Calculations that require large amounts of memory or are computationally intensive

should only be done on a supercomputer. Our application, three dimensional turbu-

lent flow simulation, is an example. Similarly, there are graphics-related calculations

that should only be done on a graphics workstation, utilizing its special purpose graph-

ics hardware. Depending on the workstation, possible examples are three-dimensional

viewing transformations, line drawing, polygon filling, and user interface management.

However, it is not always clear whether certain calculations should be performed on

a supercom_,uter or on a workstation. Changes in the data transfer rates between ma-

chines and, perhaps more importantly, changes in the way program control is transferred

between machines, can profoundly affect the optimal distribution of these calculations.

We describe an implementation that allows calculations to be distributed in an effi-

cient manner, taking advantage of the unique hardware capabilities of each machine.

First, we briefly discuss the hardware configuration of our network and the software

base on which the remote procedure calls that implement our distributed graphics sys-

tem is built. Then, the actual implementation of our distributed graphics protocol is

described. Performance measurements of graphics programs distributed between the

Cray-2 and the Iris workstation are compared with performance measurements of those

same programs running solely on the workstation. A real, successful distributed graphics
application is described. Finally, we compare some research related to ours and discuss
future plans.

Hardware Configuration

NASA's Numerical Aerodynamic Simulation Program Processing System Network I1]

(NPSN) is a national facility for computational fluid dynamics research. That portion

of the NPSN hardware relevant to our discussion is the supercomputer, the graphics
workstations, and the network communication devices.

The supercomputer is a Cray-2 [2], with 268 million 64-bit words of directly address-

able main memory. It has four CPUs with a 4.1 nanosecond global clock. Large matrix

multiplications have been benchmarked on the machine at well over 1500 million float-

ing point operations per second. The machine also has a fairly large amount (48,000

megabytes) of high performance disk storage. All communication between the Cray-2

and users is through front end machines, such as workstations, connected by a local area
network.

The workstations are Silicon Graphics Iris 2500's and 2500T's I3]. Each Iris has a

floating point accelerator, four megabytes of memory, a 400 megabyte disk, a mouse, 24

bit planes, a frame buffer, and network hardware interfaces 2 . Most importantly, each

has a pipeline of six special purpose VLSI chips called "geometry engines" that perform

graphics calculation. Three dimensional coordinate transformations, perspective projec-

tions, and six plane clipping are all performed by the geometry engine. The geometry

engine pipeline can transform, clip, and project approximately 60,000 three-dimensional
coordinates per second.

The Cray-2 and the workstations communicate over our local area network, a Net-

tThe 2500T differs from the 2500 in two significant ways: it has a 16 Mhg 32 bit 68020 CPU rather
than all 8 MHz 10 bit 68010, and it has a faster floating point accelerator.

2

work SystemsCorporation hyperchannel[41.The hyperchannelis a four trunk prioritized
CSMA/CA bus system with a 50 MHz carrier. Each computer is attached to the hy-
perchannel trunks via a hyperchannel adapter. During a large data transfer, the link

level microcode in the participating adapters reserves both adapters for the duration of

the transfer. The Cray-2, which must support many users, has three adapters of its

own, while the workstations share adapters, with four workstations interfaced to a single

adapter.

Standard System Software
All of the machines on the NPSN run Unix. They all roughly conform to AT&T Unix

System V [5], with the addition of Berkeley Unix sockets [6 t and the TCP/IP network

protocol [7]. The standard commands for file transfer and remote login between machines

use TCP/IP, as does our distributed graphics system.

The Standard Iris Graphics Library

Non-distributed user programs running locally on the workstation use the Iris Graph-

ics Library (IGL), supplied by Silicon Graphics Inc. The IGL implements standard

graphics primitives, such as move, draw, polygon fill, and viewing transformations. IGL

routines also change the color maps, read the mouse, and manipulate windows.

IGL commands may be executed either in immediate mode, where their effects occur

right away, or they may be stored in the Iris's memory grouped as a display list object.

Each display list object is comprised of a list of commands, with each command consisting

of:

Isubroutine address) (argl)(arg2)...

Display list objects may be interpreted later by invoking the IGL routine callobj.

Objects may have embedded callobj commands. Thus, hierarchical display list objects

are supported.

The Original Remote Graphics Library

The first incarnation of the Silicon Graphics special purpose graphics hardware was

as a terminal, not as a standalone workstation running Unix. This Iris terminal runs

only one program - a standalone interpreter for graphics commands. These graphics

commands are received over a network interface from a mainframe, typically a VAX or

an IBM. All user graphics programs are written on the mainframe and are linked to

the "Remote Graphics Library" (RGL), supplied by Silicon Graphics for that particular

mainframe.
The terminal user makes calls in his mainframe program to "graphics" routines like

move and draw. The RGL, linked to the user's program translates these calls into tokens

and sends these tokens, along with the parameters to the call (e.g. coordinates), over a

communication link to the Iris terminal. The terminal then interprets these commands.

Display list objects can be built on the terminal using the RGL routine makeobj, and

may later be displayed by using the RGL routine callobj. Certain RGL calls cause

data, such as the mouse position, to be returned from the Iris terminal.

When Silicon Graphics released the Iris workstation, one issue was backwards com-

patability with the Iris terminal. For this reason, they supply a program for the work-

station called wsiris, whose function is to emulate an Iris terminal. It listens for tokens

coming in over the network, and then does essentially what the Iris terminal would do

in response to these tokens. The same RGL is still used by remote mainframe programs.

Of course, the Iris workstation can run also user-written graphics programs without a
mainframe at all.

RGL On The Cray-2

Our first idea for distributed graphics was to implement the Remote Graphics Library

on the Cray-2, and give the user the capability of making calls to RGL from FORTRAN,

as well as C. This involved changing the RGL and wsiris code to use TCP/IP and

Berkeley sockets rather then the XNS protocol used by Silicon Graphics, and adding
new routines to convert Cray numeric data to the Iris's internal form.

After this was done, we could run programs already written for the Iris workstation

on the Cray-2 (in conjunction with running wsiris on the workstation). However, there
are problems with this approach.

Most programs written for the Iris workstation are heavily interactive. For example,

one might read the mouse continuously at times to implement real time rotation or

dragging. When using the RGL-wsiris combination, the response time for rotating a

simple figure using the mouse is much slower than if the program were running solely on

the Iris. To remotely update the viewing transformation based on the mouse position,

the exchange in Table 1 has to occur. The problem is tha.t this process is very slow, and

the Cray-2 is doing no useful work. Exchanging several small packets between the Cray
and Iris to do a simple task like rotation is inefficient.

An optimal situation is one in which heavy computation is done on the Cray-2, a

limited amount of distributed graphics is done using RGL, while both user interactions

and graphics not requiring intense calculations are handled by the workstation.

If the Cray-2 must do a lot of graphics, it should _batch" large numbers of RGL calls

(that don't require return values), so that they are sent to the Iris in a continuous stream

of maximum size packets. Although our measured data transfer rates are relatively

high (200-500 KBytes per second), we still find that the overhead introduced by system

ca]Is for I/O is significant. Exchanging small packets back and forth between machines

can greatly reduce response time at the workstation. Hence, the RGL buffers as many

graphics commands as it can before making a system call to send the data over the
network.

Enhancements To The RGL

Cray-2 Iris workstation
ws£ris sleeps waiting for RGL token

call RG L-get-mouse-position
send RGL token

send tcp packet

sleep waiting for mouse-position

acknowledge top packet

wakeup RGL user program
RG L-get- mouse-position returns

*acknowledge tcp packe_
*wakeup wsiris program

interpret RGL token
call IG L-get-mouse-position

send mouse position to cray

*send tcp packet

wsiris sleeps waiting for RGL token

call RGL-rotate

send RGL token

send tcp packet
*acknowledge tcp packet

*wakenp wsiris program

interpret RGL token
call IGL-rotate

Table I: Updating the viewing transformation of an object based on mouse position (the slow way).

Time flows towards the bottom of the page. Actions marked with a _*" take place in tile unix kernel.

If possible, all real time graphics manipulations not requiring intensive calculations,

e.g. menu selection or rotation of objects stored in the display list, should be done solely

on the Iris workstation. What we desired was a system where control could pass smoothly

from the Cray-2, which would use the RGL to build objects on the Iris, to the Iris, where

they could be manipulated locally.

A key idea was to turn the RGL token interpreter program wsiris into a subroutine,

called rcvgraphlcs, that any Iris program can call. The rcvgraphics subroutine con-

tinuously interprets graphics tokens received over the network, by calling the appropriate

IGL routine. It returns when it receives a special token : from the Cray-2; a routine,

named last_one was added to the Cray-2 RGL to send this special token. Thus a model

distribued application can be implemented as shown in Table 2.

Cray-2 Iris workstation

compute

makeobj (1)

move ()
draw()

draw ()

move ()
cLraw()

endob j (1)

1 ast_one ()

compute

initialise colormaps, draw menu ..."

rcvgraphic s ()

(rcvgraphics is interpreting tokens and

calling the IGL to build a display

list object.)

rcvgraphics returns.

callobj(1)

readJouse()

rotate()

callobj(1)

Table 2: A model application, where the Cray-2 and the Iris bcth do graphics.

Such a cycle cycle can be repeated, with the Cray-2 making another object, and the

Iris transforming it in real time in response to user input. The Cray-2 is freed from

handling events like mouse interrupts, and the Iris is freed from computing the object's

initial shape.

Synchronous message passing routines were added to both the remote and local graph-

ics libraries to provide additional flexibility in controlling dustributed applications. These

routines (sndmsg and rcvasg) allow exchange of unformatted ascii data, which is inter-

preted by the given application. The most common application for sndasg and rcvmsg is

one in which the Iris tells the Cray-2 which computational task to perform after querying

the user. An example of this sequence is shown in Table 3:

2Using this technique, the wsiris program, mentioned above, would be written (in C) on tile Iris simply

rcvgraphics () ;

h, this ca._e, as with tile original wsiris program, a,,y n,ou._e or keyboard i:,p,t to the program must
be haadled by tile Cray-2.

Cray-2 Iris workstation

rcvmsg(message)

if (message = ''I'')
call subroutinel

elseif {message = ''2'')
call subroutine2

get user command

sndmsg(command)

Table 3: A typical use of sndmsg and rcvmsg.

Building Display Lists On The Cray-2

In an effort r,o speed up distributed graphics, we investigated the feasibility of building

the display list objects on the Cray-2 and sending complete objects to the Iris, rather

then having rcvgraphics call the IGL to build objects on the Iris as it interprets RGL

tokens.

Because Iris display list commands are 32-bit addresses, whereas RGL tokens are 16

bits long, a display list object consisting only of three dimensional moves and draws (as

most of our are) is 14% larger than the corresponding RGL data describing the same

object, a

The justification for building objects on the Cray-2 is that it is faster than building

them on the Iris in response to RGL tokens, and that this more than makes up for the

overhead of transmitting 14% extra data. This proved to be true for the 2500s, but not

for the faster 2500T's, as is shown by the benchmark results below.

Benchmark Results

Performance measurements were made using two programs. Each program was dis-

tributed between the Iris and the Cray-2 and, for comparison, was also run totally locally

to the Iris. In all cases, the Iris was dedicated to our programs, (no other users), but

the Cray-2 was in multi-user (production) mode. To eliminate variations caused by the

Cray-2 system load, the minimum times are reported.

The first program requires almost no calculations and consists primarily of a series of

two-dimensional moves and draws. It was run in both immediate mode, where the moves

and draws produce immediate graphical results, and in display list mode, where they

are encapsulated in an object that is later interpreted and displayed. In the distributed

versions of this program, display list objects were built using 2 methods: on the Iris using

RGL, and on the Cray-2 where they are then sent to the Iris. The results are shown in

Table 4.

Since the only difference between the 2500 and the 2500T is the CPU (the same

special-purpose graphics hardware is on both machines), it is reasonable to assume that

3The data {parameters) associated with commands aad tokens is identical.

Local to Iris - immediate mode:

Local to Iris - display list mode:
Distributed - immediate mode:

Distributed - display list objects built with RGL:
Distributed - display list objects built on Cray-2:

2500 2500T

(MC68010) (MC08020)

1.98
3.85
4.32

7.61
4.,_2

1.96
2.55
1.98
3.50
3.50

Table 4: Running times, in seconds, of a simple program that does a lot of graphics but almost no

numerical computation.

only a slight improvement will be seen in tasks that are not CPU-bound. This is verified

by the figures above on local immediate mode, where both the 68020 and the 68010 are

fast enough to keep the graphics pipline full.

In both local display list mode and distributed RGL display list mode, the Iris must

spend time creating display lists. Here, we see that a faster CPU does make a difference.

Distributing tasks between machines introduces the additional overhead of data trans-

fer and system calls for I/O on each machine. Use of display lists, either local or dis-

tributed, also introduces overhead since they must be built on some machine and then

later interpreted on the Iris.

However, in our distributed graphics system, operations can proceed concurrently on

the Cray-2 and the Iris. We can overlap the generation of graphical data on the Cray-2

with its interpretation and display on the Iris. Overlapping large amounts of graphics in

this way also lets us take advantage of our relatively high data transfer rates (200 - 500

Kbytes/second) and large network I/O buffers (16K bytes).

A Successful Application

The second program we report on is a fairly complicated application for interactive

viewing of three dimensional vector fields. It is the Real-Time Interactive Particle Tracer

(RIP) [9].

RIP takes as input a vector field and a set of starting locations in the field, along with

a computational grid 4 For each specified starting location in the field it computes and

displays the "particle trace" (integral curve) corresponding to that point [10] . It uses

an explicit Euler method to advance the particle in space, based on interpolated values

of the vector field inside a computational grid cell.

This program is computationally intensive, consisting of a section of floating point

calculations followed by a series of moves and draws. In the distributed case, RGL tokens

are used to construct the objects on the Iris. Results are shown in Table 5.

The dramatic decrease in response time gained by distributing this three dimensional

4A (._et of) three dimensional curvilinear coordinate system(s) and boundaries, see 18!.

2500 2500T 1(MC68010) (MC68020)

Local to Iris - display list mode: 275.0 70.0 [
Distributed - display list objects built with RGL: 12.0 4.0 I

Table 5: Running times, in seconds, of a program that does both significant numerical calculation and

significant graphics. This program takes 3.1 seconds to run on the Cray-2, neglecting distributed graphics.

flow visualization program between the two machines has been accepted with enthusiasm

by our users, and has led them to take this distributed graphics library quite seriously.

However, faster response is not the only benefit obtained. The vector fields that this

program manipulates can be very large (over 160 million bytes) and must be kept in

memory. This is essentially impossible for a program running locally to the Iris, but is

not much of a problem for the distributed version, since all operations on the vector fields

take place solely on the Cray, with only the selected particle paths being sent to the Iris.

Three dimensional boundary surfaces are displayed on the Iris for reference along with

the particle traces. Three dimensional rotation, translation, clipping, menu interaction,

and three dimensional particle starting point selection is all mouse driven and handled
locally on the Iris.

A videotape of this application being used is available from the authors.

Related Research

Research into distributed graphics has a significanthistory. Hartzman Ill]does a

relativelycomplete survey of the field.Our work issimilar and [121in that we use the

same language and operating system on both processors,and in that the user need not

startwith a partitionedapplication.(Indeed, most of our significantapplicationsto date

started out as localIrisonly programs, and were laterdistributed.)However, unlike [12],

our user does need to specify some of the cross partitioninterface.Specifically,our user

must encode and decode the non-graphical part. The CAD/CAM community has been

using distributed graphics for some time [13}and protocols for distributed ray tracing

are now in use {14].

Tile Future

Unlike so much previous work in distributed graphics, we have finally gotten around

the data transfer bottleneck. Our system is well balanced, and we can tune applications

so that compute time, data transfer time, and graphics processing time contribute about

equally.

In the future, we will experiment with a more general remote procedure call mech-

anism between the Cray-2 and the Iris [15], along with instrumentation [16} and a stub

generator for semiautomatic distribution of user applications [17] [18!. We also look

9

forward to seeing additional computationally intensive user applications (such as three

dimensional grid generation [81 and contouring) distributed using the current libraries.

Conclusions

We have .described the implementation of a distributed graphics system, running be-

tween a workstation and a supercomputer. Our implementation is successful and in

constant use. Because the same system call interface (unix), 'communications protocols

(TCP/IP), and languages (C and fortran) were available on both machines, the imple-

mentation was relatively straightforward. Distributed graphics programs can run on our

local network, cr over the internet to distant sites. Applications can be split so that in-

tensive computation and graphics are done by the supercomputer while user interaction,

viewing transformations, and additional graphics are done by the workstation.

Acknowledgements

We would like to thank Gordon Bancroft, Pieter Buning, Tom Lasinski, Fergus Mer-

ritt, and Stuart Rogers for helping to make this paper possible.

References

[11 F. R. Bailey. "Status and Projections of the NAS Program." to appear in Syrup.

on Future Directions of Computational Mechanics (ASME winter Annual Meeting}.

Anaheim, CA, Dec. 7-12, 1986.

[2] Cray Research Inc. Cray-e Enffineering Maintenance Manual. Cray Research Inc.,

Mendota Heights, MN, 1985.

[3] Silicon Graphics Inc. IRIS User's Guide. Silicon Graphics Inc., Mountain View, CA,

1986.

[4] Network Systems Corp. Nucleus Adapter Reference Manual. Network Systems Corp.,

Brooklyn Park, MN, 1981.

[5] D. E. Kevorkian, ed. System V Interface Definition. AT&T, Indianapolis, IN, 1285.

[6] S. J. Lefl:ler. A #.2BSD lnterproccss Communication Primer. Dept. of Electrical

Engineering and Computer Science, University of California, Berkeley, CA, 1983.

[7] E.J. Feinler et al., eds. DDN Protocol Handbook. Voi. 1, Defense Technical Informa-

tion Center, Alexandria, VA, 1985.

!8] J. F. Thompson et al. Numerical Grid Generation, Foundations and Applications.

Elsevier Pub. Co. Inc., New York, NY, 1985.

l0

[9] S. Rogers, F. Merritt, D. Choi. RIP (Real-Time Interactive Particle Tracer). Com-

puter Program. NASA Ames Research Center, Moffett Field, CA, 1986.

[10] P. G. Buning and J. L. Steger. "Graphics and Flow Visualization in Computational

Fluid Dynamics." in AIAA 7th Computational Fluid Dynamics Conference. Cincin-

nati, OH, July 15-17, 1985.
.

[11] P. D. Hartzan Configurable Software/or Satellite Graphics. research and develop-

ment report COO-3077-148, Courant Mathematics and Computing Laboratory, New

York, NY, 1977.

[12]

[13]

[14}

[15]

G. Hamlin. Configurable Applications for Satellite Graphics. Ph.D. Dissertation,

University of North Carolina, Chapel Hill, NC, 1975.

J. R. Rao et al. "Performance Evaluation of a Test Distributed Graphics System"

in IEEE Computer Software and Applications Conference. Chicago, IL, 1979.

Mike Muss, U.S. Army Ballistics Research Laboratory. Personal Communication.

1986.

Sun Microsystems. Remote Procedure Call Protocol Specification. Sun Microsystems,

Mountain View, CA, 1985.

[16} S. L. Graham et al. "Gprof: a Call Graph Execution Profiler." in Proc. ACM SIG-

PLAN '81t Symposium on Compiler Construction. Association for Computing Ma-

chinery, New York, NY, 1982.

[17] R. J. Souza and S. P. Miller. Unix and Remote Procedure Calls: A Peaceful Coexis-

tence? MIT Project Athena, Cambridge, MA, 1986.

[18] M. B. Jones et al. "Matchmaker: An interface Specification Language for Distributed

Processing." in Proc. 1'2th ACM SIGACT-SIGPLAN Syrup. on Principles of Pro-

gramming Languages. Association for Computing Machinery, New York, NY, 1985.

11

